Geometrical interpretation of the Timoshenko–Ehrenfest theorem

Author:

Ryabov Valeriy1ORCID

Affiliation:

1. National Research Centre RF “Kurchatov Institute”, NBIC Department, Moscow, 123182, Russia

Abstract

In this paper, geometrical interpretation of the Timoshenko–Ehrenfest theorem is given. It is based on a vector-valued version of continuum mechanics, which considers the deformed body as a surface in extended coordinate space. Scalar parameters of the metrics of this hypersurface determine the strain. In the bending beam case, this surface is formed by a twisted cylinder rolled into a cone. Accordingly, three kinds of metric parameters, the stretch ratio, the twist and cone angles responsible for stretching, shear, and bending determine the shape of the elastic curve. The balance equations for generalized forces taking into account shear deformation and rotational bending effects are derived. A new formula for the shear coefficient comes out of the derivation. It is shown that its magnitude 5/6 for quasistatic Timoshenko beam remains fair for the exact form of the cross-section at the free end.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Physics and Astronomy (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3