Potentials and point symmetries of Klein–Gordon equations in space-time homogenous Gödel-type metrics

Author:

Jamal Sameerah1ORCID

Affiliation:

1. School of Mathematics and Centre for Differential Equations, Continuum Mechanics and Applications, University of the Witwatersrand, Johannesburg, Wits 2001, South Africa

Abstract

In this paper, we study the geometric properties of generators for the Klein–Gordon equation on classes of space-time homogeneous Gödel-type metrics. Our analysis complements the study involving the “Symmetries of geodesic motion in Gödel-type spacetimes” by U. Camci (J. Cosmol. Astropart. Phys., doi: 10.1088/1475-7516/2014/07/002 ). These symmetries or Killing vectors (KVs) are used to construct potential functions admitted by the Klein–Gordon equation. The criteria for the potential function originates from three primary sources, viz. through generators that are identically the Killing algebra, or with the KV fields that are recast into linear combinations and third, real subalgebras within the Killing algebra. This leads to a classification of the [Formula: see text] Klein–Gordon equation according to the catalogue of infinitesimal Lie and Noether point symmetries admitted. A comprehensive list of group invariant functions is provided and their application to analytic solutions is discussed.

Funder

National Research Foundation

Publisher

World Scientific Pub Co Pte Lt

Subject

Physics and Astronomy (miscellaneous)

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Totally geodesic and parallel hypersurfaces of Gödel-type spacetimes;Journal of Geometry and Physics;2024-04

2. Ricci Bi-Conformal Vector Fields on Homogeneous Gödel-Type Spacetimes;Journal of Nonlinear Mathematical Physics;2023-11-13

3. Noether symmetries for a class of static plane symmetric solutions in f(T) gravity;International Journal of Geometric Methods in Modern Physics;2023-06-22

4. On the Formulaic Solution of a $$(n+1)$$th Order Differential Equation;International Journal of Applied and Computational Mathematics;2021-04-10

5. Homogeneous geodesics and natural reductivity of homogeneous Gödel-type spacetimes;Journal of Geometry and Physics;2021-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3