Affiliation:
1. Center for Theoretical Studies of Physical Systems, Clark Atlanta University, Atlanta, GA, 30314, USA
Abstract
Two methods to prove the Riemann Hypothesis are presented. One is based on the modular properties of Θ (theta) functions and the other on the Hilbert–Polya proposal to find an operator whose spectrum reproduces the ordinates ρn (imaginary parts) of the zeta zeros in the critical line: sn = ½ + iρn. A detailed analysis of a one-dimensional Dirac-like operator with a potential V(x) is given that reproduces the spectrum of energy levels En = ρn, when the boundary conditions ΨE (x = -∞) = ± ΨE (x = +∞) are imposed. Such potential V(x) is derived implicitly from the relation [Formula: see text], where the functional form of [Formula: see text] is given by the full-fledged Riemann–von Mangoldt counting function of the zeta zeros, including the fluctuating as well as the [Formula: see text] terms. The construction is also extended to self-adjoint Schroedinger operators. Crucial is the introduction of an energy-dependent cut-off function Λ(E). Finally, the natural quantization of the phase space areas (associated to nonperiodic crystal-like structures) in integer multiples of π follows from the Bohr–Sommerfeld quantization conditions of Quantum Mechanics. It allows to find a physical reasoning why the average density of the primes distribution for very large [Formula: see text] has a one-to-one correspondence with the asymptotic limit of the inverse average density of the zeta zeros in the critical line suggesting intriguing connections to the renormalization group program.
Publisher
World Scientific Pub Co Pte Lt
Subject
Physics and Astronomy (miscellaneous)
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献