ON THE RIEMANN HYPOTHESIS, AREA QUANTIZATION, DIRAC OPERATORS, MODULARITY, AND RENORMALIZATION GROUP

Author:

CASTRO CARLOS1

Affiliation:

1. Center for Theoretical Studies of Physical Systems, Clark Atlanta University, Atlanta, GA, 30314, USA

Abstract

Two methods to prove the Riemann Hypothesis are presented. One is based on the modular properties of Θ (theta) functions and the other on the Hilbert–Polya proposal to find an operator whose spectrum reproduces the ordinates ρn (imaginary parts) of the zeta zeros in the critical line: sn = ½ + iρn. A detailed analysis of a one-dimensional Dirac-like operator with a potential V(x) is given that reproduces the spectrum of energy levels En = ρn, when the boundary conditions ΨE (x = -∞) = ± ΨE (x = +∞) are imposed. Such potential V(x) is derived implicitly from the relation [Formula: see text], where the functional form of [Formula: see text] is given by the full-fledged Riemann–von Mangoldt counting function of the zeta zeros, including the fluctuating as well as the [Formula: see text] terms. The construction is also extended to self-adjoint Schroedinger operators. Crucial is the introduction of an energy-dependent cut-off function Λ(E). Finally, the natural quantization of the phase space areas (associated to nonperiodic crystal-like structures) in integer multiples of π follows from the Bohr–Sommerfeld quantization conditions of Quantum Mechanics. It allows to find a physical reasoning why the average density of the primes distribution for very large [Formula: see text] has a one-to-one correspondence with the asymptotic limit of the inverse average density of the zeta zeros in the critical line suggesting intriguing connections to the renormalization group program.

Publisher

World Scientific Pub Co Pte Lt

Subject

Physics and Astronomy (miscellaneous)

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3