Dynamical analysis for cylindrical geometry in non-minimally coupled f(R,T) gravity

Author:

Bhatti M. Z.1ORCID,Yousaf Z.1,Yousaf M.1

Affiliation:

1. Department of Mathematics, University of the Punjab, Quaid-i-Azam Campus, Lahore 54590, Pakistan

Abstract

This paper aims to investigate the stability constraints under the influence of particular modified gravity theory [Formula: see text], i.e. [Formula: see text] gravity in which the Lagrangian is a varying function of [Formula: see text] and trace of energy momentum tensor ([Formula: see text]). We examine stable behavior for compact cylindrical star having anisotropic symmetric configuration. We establish dynamical equations as well as equations of continuity in the background of this particular non-minimal coupled [Formula: see text]. We utilize perturbation technique which will be applied on geometrical as well as material physical quantities to constitute collapse equation. We continue this significant investigation to understand the dynamical behavior of considered cylindrical system under non-minimal coupled [Formula: see text] functional, i.e. [Formula: see text]. This gravitational function gives compatible findings only for [Formula: see text], also [Formula: see text] and [Formula: see text] considered in this astrophysical model as coupling entity. This model contains [Formula: see text] which is constant entity, having the values of order of the effective Ricci scalar [Formula: see text]. Furthermore, we impose some physical constraints to determine and maintain the stability criteria by establishing the expression of adiabatic index, i.e. [Formula: see text] for cylindrical anisotropic configuration, in Newtonian [Formula: see text] and post-Newtonian ([Formula: see text]) eras.

Funder

higher education commision, pakistan

Publisher

World Scientific Pub Co Pte Ltd

Subject

Physics and Astronomy (miscellaneous)

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3