A first-order Lagrangian theory of fields with arbitrary spin

Author:

Canarutto Daniel1ORCID

Affiliation:

1. Dipartimento di Matematica e Informatica “U. Dini”, Via S. Marta 3, 50139 Firenze, Italia

Abstract

The bundles suitable for a description of higher-spin fields can be built in terms of a 2-spinor bundle as the basic “building block”. This allows a clear, direct view of geometric constructions aimed at a theory of such fields on a curved spacetime. In particular, one recovers the Bargmann–Wigner equations and the [Formula: see text]-dimensional representation of the angular-momentum algebra needed for the Joos–Weinberg equations. Looking for a first-order Lagrangian field theory we argue, through considerations related to the 2-spinor description of the Dirac map, that the needed bundle must be a fibered direct sum of a symmetric “main sector” — carrying an irreducible representation of the angular-momentum algebra — and an induced sequence of “ghost sectors”. Then one indeed gets a Lagrangian field theory that, at least formally, can be expressed in a way similar to the Dirac theory. In flat spacetime, one gets plane-wave solutions that are characterized by their values in the main sector. Besides symmetric spinors, the above procedures can be adapted to anti-symmetric spinors and to Hermitian spinors (the latter describing integer-spin fields). Through natural decompositions, the case of a spin-2 field describing a possible deformation of the spacetime metric can be treated in terms of the previous results.

Publisher

World Scientific Pub Co Pte Lt

Subject

Physics and Astronomy (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3