Geometrical interpretation of isospin subalgebras in SU(3)

Author:

Garat Alcides1ORCID

Affiliation:

1. Universidad de la República, Av. 18 de Julio 1824-1850, 11200 Montevideo, Uruguay

Abstract

Ever since new tetrads in four-dimensional Lorentzian curved spacetimes were introduced, many outstanding properties and results have been proven regarding Riemannian geometry, gauge theory or group theory. These tetrads might carry spacetime-kinematic information about particle multiplets. Among other properties, these new tetrads, locally and covariantly diagonalize stress–energy tensors. In the case where particles have an electromagnetic field, the local planes of gauge symmetry served as a tool in order to propose a new gravitational-kinematic interpretation of particle multiplets. The core reason stems from the mathematical fact that all local gauge symmetries associated to the Standard Model have been proven to be isomorphic to local groups of tetrad transformations in four-dimensional Lorentzian spacetimes. Therefore, the different stress–energy tensors have been proven to determine the local gauge geometry as a natural part of Riemannian geometry. The stress–energy tensors determine locally the orthogonal planes such that the rotation on either of them of the local tetrad vectors that span these planes is isomorphic to local tetrad gauge transformations. All these properties put together allow for a reinterpretation presented previously of particle states as particle gravitational-kinematic-spacetime tetrad states in the asymptotically flat limit. We proceed in this paper to study the case where there are [Formula: see text], [Formula: see text] and [Formula: see text] isospin subalgebras or submultiplets within the context of this new Riemannian interpretation of gauge symmetries.

Publisher

World Scientific Pub Co Pte Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3