Static perfect fluid space-time and paracontact metric geometry

Author:

Prakasha D. G.1ORCID,Amruthalakshmi M. R.1,Veeresha P.2

Affiliation:

1. Department of Studies in Mathematics, Davangere University, Davangere, Karnataka 577 007, India

2. Department of Mathematics, CHRIST (Deemed to be University), Bengaluru, Karnataka 560029, India

Abstract

The main purpose of this paper is to study and explore some characteristics of static perfect fluid space-time on paracontact metric manifolds. First, we show that if a [Formula: see text]-paracontact manifold [Formula: see text] is the spatial factor of a static perfect fluid space-time, then [Formula: see text] is of constant scalar curvature [Formula: see text] and squared norm of the Ricci operator is given by [Formula: see text]. Next, we prove that if a [Formula: see text]-paracontact metric manifold [Formula: see text] with [Formula: see text] is a spatial factor of static perfect space-time, then for [Formula: see text], [Formula: see text] is flat, and for [Formula: see text], [Formula: see text] is locally isometric to the product of a flat [Formula: see text]-dimensional manifold and an [Formula: see text]-dimensional manifold of constant negative curvature [Formula: see text]. Further, we prove that if a paracontact metric 3-manifold [Formula: see text] with [Formula: see text] is a spatial factor of static perfect space-time, then [Formula: see text] is an Einstein manifold. Finally, a suitable example has been constructed to show the existence of static perfect fluid space-time on paracontact metric manifold.

Funder

Department of Science and Technology, Government of India

Publisher

World Scientific Pub Co Pte Ltd

Subject

Physics and Astronomy (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On static perfect fluid spacetimes and almost co-Kähler manifolds;Asian-European Journal of Mathematics;2024-08-30

2. Static perfect fluid spacetimes on GRW spacetimes;Analysis and Mathematical Physics;2023-05-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3