Affiliation:
1. Centre for Cosmology, Astrophysics and Space Science, GLA University, Mathura, Uttar Pradesh 281406, India
Abstract
In this paper, we explore the homogeneous and isotropic flat Friedmann–Robertson–Walker (FRW) model in Chameleon cosmology. By considering a non-minimal coupling between the scalar field and matter, we present a non-singular bouncing cosmological scenario of the universe. The universe initially exhibits the ekpyrotic phase during the contracting era, undergoes a non-singular bounce, and then in expanding era, it smoothly transits to the decelerating era having matter and radiation-dominated phases. Further, this decelerating era is smoothly connected to the late-time dark energy-dominated era of the present epoch. We use numerical solution techniques to solve non-minimally coupled gravity equations for understanding the evolution of scalar field along with other quantities like effective potential in the model. The model thus unifies an ekpyrotic, non-singular, asymmetric bounce with the dark energy era of the present epoch. We study the evolution of bouncing model and confront the model with observational results on the equation of state parameter by constraining the model parameters.
Publisher
World Scientific Pub Co Pte Ltd
Subject
Physics and Astronomy (miscellaneous)
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献