Affiliation:
1. Department of Physics, COMSATS University, Islamabad Pakistan
2. Department of Physics, National Mathematical Centre, Sheda-Kwali Abuja, Nigeria
Abstract
Using the fact that neutrinos only participate in weak and gravitational interactions, we explore the possibility of having their masses emerged at the intersection between extended electroweak theory and theory of gravity. We describe how these two seemingly incompatible theories could be embedded in a lepton-number violating 5-dimensional Lagrangian [Formula: see text]. A peculiar feature of this approach is its ability to generate effective Majorana neutrino masses via the spontaneous symmetry breaking (SSB) of Grand Unified Theory (GUT), [Formula: see text] and 4[Formula: see text] symmetric matrix of gravitational couplings. Within the purview of this theoretical framework, we obtain values for the effective Majorana mass [Formula: see text][Formula: see text]meV, and the Majorana neutrino masses [Formula: see text][Formula: see text]meV, [Formula: see text][Formula: see text]meV, [Formula: see text][Formula: see text]meV, [Formula: see text][Formula: see text]meV and [Formula: see text][Formula: see text]eV. Our results are in good agreement with both experimental and cosmological data.
Publisher
World Scientific Pub Co Pte Lt
Subject
Physics and Astronomy (miscellaneous)