Four interactions in the sedenion curved spaces

Author:

Weng Zi-Hua12ORCID

Affiliation:

1. School of Aerospace Engineering, Xiamen University, Xiamen, P. R. China

2. College of Physical Science and Technology, Xiamen University, Xiamen, P. R. China

Abstract

The paper aims to apply the complex-sedenions to explore the field equations of four fundamental interactions, which are relevant to the classical mechanics and quantum mechanics, in the curved spaces. Maxwell was the first to utilize the quaternions to describe the property of electromagnetic fields. Nowadays, the scholars introduce the complex-octonions to depict the electromagnetic and gravitational fields. And the complex-sedenions can be applied to study the field equations of the four interactions in the classical mechanics and quantum mechanics. Further, it is able to extend the field equations from the flat space into the curved space described with the complex-sedenions, by means of the tangent-frames and tensors. The research states that a few physical quantities will make a contribution to certain spatial parameters of the curved spaces. These spatial parameters may exert an influence on some operators (such as, divergence, gradient, and curl), impacting the field equations in the curved spaces, especially, the field equations of the four quantum-fields in the quantum mechanics. Apparently, the paper and General Relativity both confirm and succeed to the Cartesian academic thought of ‘the space is the extension of substance’.

Funder

National Natural Science Foundation of China

Publisher

World Scientific Pub Co Pte Lt

Subject

Physics and Astronomy (miscellaneous)

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Quaternionic generalization of telegraph equations;International Journal of Geometric Methods in Modern Physics;2024-06-15

2. Scalar fields described by Dirac quaternion wave equation;International Journal of Geometric Methods in Modern Physics;2023-08-11

3. On the Quaternion Transformation and Field Equations in Curved Space-Time;Proceedings of the National Academy of Sciences, India Section A: Physical Sciences;2022-08-01

4. Octonic Maxwell-type multifluid plasma equations;The European Physical Journal Plus;2021-03

5. Sedenionic formulation for the field equations of multifluid plasma;International Journal of Geometric Methods in Modern Physics;2020-12-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3