Affiliation:
1. Unité Mixte de Recherche 5127 CNRS, Université de Savoie Mont Blanc, Laboratoire de Mathématiques (LAMA), Campus Scientifique 73370 Le Bourget-du-Lac, France
Abstract
Given an ascending sequence of weak symplectic Banach manifolds on which the Darboux Theorem is true, we can ask about conditions under which the Darboux Theorem is also true on the direct limit. We will show that, in general, without very strong conditions, the answer is negative. In particular, we give an example of an ascending symplectic Banach manifolds on which the Darboux Theorem is true but not on the direct limit. In the second part, we illustrate this discussion in the context of an ascending sequence of Sobolev manifolds of loops in symplectic finite-dimensional manifolds. This context gives rise to an example of direct limit of weak symplectic Banach manifolds on which the Darboux Theorem is true around any point.
Publisher
World Scientific Pub Co Pte Lt
Subject
Physics and Astronomy (miscellaneous)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献