The Poincaré variational principle in the Lagrange–Poincaré reduction of mechanical systems with symmetry

Author:

Storchak S. N.1

Affiliation:

1. A. A. Logunov Institute for High Energy Physics of NRC “Kurchatov Institute”, Protvino 142281, Russian Federation

Abstract

The local Lagrange–Poincaré equations (the reduced Euler–Lagrange equations) for the mechanical system describing the motion of a scalar particle on a finite-dimensional Riemannian manifold with a given free isometric smooth action of a compact semi-simple Lie group are obtained. The equations are written in terms of dependent coordinates which are used to represent the local dynamic given on the orbit space of the principal fiber bundle. The derivation of the equations is performed with the help of the variational principle developed by Poincaré for mechanical systems with symmetry.

Publisher

World Scientific Pub Co Pte Lt

Subject

Physics and Astronomy (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3