Some Bianchi type-V accelerating cosmological models in f(R,T) = f1(R) + f2(T) formalism

Author:

Bhardwaj Vinod Kumar1,Yadav Anil Kumar2ORCID

Affiliation:

1. Department of Mathematics, GLA University, Mathura 281406, India

2. Department of Physics, United College of Engineering and Research, Greater Noida 201310, India

Abstract

In this paper, we have studied the transition and physical behavior of Bianchi type-V cosmological models within the formalism of [Formula: see text] gravity. To obtain the solution of field equations and phase transition of universe consistent with recent cosmological observations, time varying deceleration parameters are considered. In this paper, we used two different scale factors of the form (i) [Formula: see text], where [Formula: see text] are constants. Here, for [Formula: see text] the universe shows transition with accelerated expansion. (ii) [Formula: see text], where [Formula: see text] and [Formula: see text] are constants. For [Formula: see text], the universe achieves a phase transition from early decelerating to current accelerating phase. The model I initially starts with quintessence scenario ([Formula: see text]) and ends up with ([Formula: see text]) as a model with cosmological constant ([Formula: see text]) as [Formula: see text]. Model II, for [Formula: see text] indicates the phantom energy scenario and for [Formula: see text], the model starts with quintessence [Formula: see text] and ends with vacuum energy scenario. A point type singularity has been observed in the derived model I. Some physical and geometrical properties of the models have been established and discussed to derive the validity of models with respect to recent astrophysical observations.

Publisher

World Scientific Pub Co Pte Lt

Subject

Physics and Astronomy (miscellaneous)

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3