Green Function Calculations of Properties for the Magnetocaloric Layered Structures Based Upon FeMnAsP

Author:

Schilling Osvaldo F.1

Affiliation:

1. Departamento de Física, Universidade Federal de Santa Catarina, Campus, Trindade, 88040-900, Florianopolis, SC, Brazil

Abstract

The alternating Fe–Mn layered structures of the compounds FeMnAsxP[Formula: see text] display properties which have been demonstrated experimentally as very promising as far as commercial applications of the magnetocaloric effect are concerned. However, the theoretical literature on this and other families of magnetocaloric compounds still adopts simple molecular-field models in the description of important statistical mechanical properties like the entropy variation that accompanies applied isothermal magnetic field cycling, as well as the temperature variation following adiabatic magnetic field cycles. In the present paper, a random phase approximation Green function theoretical treatment is applied to such structures. The advantages of such approach are well known since the details of the crystal structure are easily incorporated in the model, as well as a precise description of correlations between neighbor spins can be obtained. We focus on a simple one-exchange parameter Heisenberg model, and the observed first-order phase transitions are reproduced by the introduction of a biquadratic term in the Hamiltonian whose origin is related both to the magnetoelastic coupling with the phonon spectrum in these compounds as well as with the values of spins in the Fe and Mn ions. The calculations are compared with experimental magnetocaloric data for the FeMnAsxP[Formula: see text] compounds. In particular, the magnetic field dependence for the entropy variation at the transition temperature predicted from the Landau theory of continuous phase transitions is reproduced even in the case of discontinuous transitions.

Publisher

World Scientific Pub Co Pte Lt

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3