Well-posedness and blow-up properties for the generalized Hartree equation

Author:

Arora Anudeep Kumar1,Roudenko Svetlana2

Affiliation:

1. Department of Mathematics, Statistics and Computer Science, University of Illinois at Chicago, Chicago, IL 60607, USA

2. Department of Mathematics and Statistics, Florida International University, Miami 33199, USA

Abstract

We study the generalized Hartree equation, which is a nonlinear Schrödinger-type equation with a nonlocal potential [Formula: see text]. We establish the local well-posedness at the nonconserved critical regularity [Formula: see text] for [Formula: see text], which also includes the energy-supercritical regime [Formula: see text] (thus, complementing the work in [A. K. Arora and S. Roudenko, Global behavior of solutions to the focusing generalized Hartree equation, Michigan Math J., forthcoming], where we obtained the [Formula: see text] well-posedness in the intercritical regime together with classification of solutions under the mass–energy threshold). We next extend the local theory to global: for small data we obtain global in time existence and for initial data with positive energy and certain size of variance we show the finite time blow-up (blow-up criterion). In the intercritical setting the criterion produces blow-up solutions with the initial values above the mass–energy threshold. We conclude with examples showing currently known thresholds for global vs. finite time behavior.

Publisher

World Scientific Pub Co Pte Lt

Subject

General Mathematics,Analysis

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Scattering threshold for the focusing energy-critical generalized Hartree equation;Open Mathematics;2024-01-01

2. The radial bi-harmonic generalized Hartree equation revisited;Discrete and Continuous Dynamical Systems - S;2023

3. The Generalized Hartree Equation with a Combined Source Term;Acta Applicandae Mathematicae;2022-10-19

4. Scattering for a focusing Hartree equation;Annals of Functional Analysis;2022-08-04

5. Well-posedness in weighted spaces for the generalized Hartree equation with p < 2;Communications in Contemporary Mathematics;2021-08-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3