Affiliation:
1. Département de Mathématiques et Applications, Ecole Normale Supérieure et CNRS, UMR 8553, 45, rue d'Ulm, 75230 Paris cedex 05, France
Abstract
We consider multidimensional hyperbolic systems of conservation laws with relaxation, together with their associated limit systems. A strong stability condition for such asymptotics has been introduced by Chen, Levermore and Liu, namely the existence of an entropy extension. We propose here a new stability condition, the reduced stability condition, which is weaker than the previous one, but still has the property to imply the subcharacteristic or interlacing conditions, and the dissipativity of the leading term in the Chapman–Enskog expansion. This reduced stability condition has the advantage of involving only the submanifold of equilibria, or maxwellians, so that it is much easier to check than the entropy extension condition. Our condition generalizes the one introduced by the author in the case of kinetic, i.e. diagonal semilinear relaxation. We provide an adapted stability analysis in the context of approximate Riemann solvers obtained via relaxation systems.
Publisher
World Scientific Pub Co Pte Lt
Subject
General Mathematics,Analysis
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献