On interface transmission conditions for conservation laws with discontinuous flux of general shape

Author:

Andreianov Boris12,Cancès Clément34

Affiliation:

1. Laboratoire de Mathématiques de Besançon, CNRS UMR 6623, Université de Franche-Comté, 16 Route de Gray, 25030 Besançon Cedex, France

2. Institut für Mathematik, Technische Universität Berlin, Straße des 17. Juni 136, 10623 Berlin, Germany

3. UPMC Univ Paris 06, UMR 7598, Laboratoire Jacques-Louis Lions, 75005 Paris, France

4. CNRS, UMR 7598, Laboratoire, Jacques-Louis Lions, 75005, Paris, France

Abstract

Conservation laws of the form ∂tu + ∂xf(x;u) = 0 with space-discontinuous flux f(x;⋅) = fl(⋅)1x<0 + fr(⋅)1x>0 were deeply investigated in the past ten years, with a particular emphasis in the case where the fluxes are "bell-shaped". In this paper, we introduce and exploit the idea of transmission maps for the interface condition at the discontinuity, leading to the well-posedness for the Cauchy problem with general shape of fl,r. The design and the convergence of monotone Finite Volume schemes based on one-sided approximate Riemann solvers are then assessed. We conclude the paper by illustrating our approach by several examples coming from real-life applications.

Publisher

World Scientific Pub Co Pte Lt

Subject

General Mathematics,Analysis

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3