HIGH-ORDER ACCURATE NUMERICAL SCHEMES FOR THE PARABOLIC EQUATION

Author:

FLOURI EVANGELIA T.1,EKATERINARIS JOHN A.1,KAMPANIS NIKOLAOS A.1

Affiliation:

1. Institute of Applied and Computational Mathematics, Foundation for Research and Technology–Hellas, 71110 Heraklion, Greece

Abstract

Efficient, high-order accurate methods for the numerical solution of the standard (narrow-angle) parabolic equation for underwater sound propagation are developed. Explicit and implicit numerical schemes, which are second- or higher-order accurate in time-like marching and fourth-order accurate in the space-like direction are presented. The explicit schemes have severe stability limitations and some of the proposed high-order accurate implicit methods were found conditionally stable. The efficiency and accuracy of various numerical methods are evaluated for Cartesian-type meshes. The standard parabolic equation is transformed to body fitted curvilinear coordinates. An unconditionally stable, implicit finite-difference scheme is used for numerical solutions in complex domains with deformed meshes. Simple boundary conditions are used and the accuracy of the numerical solutions is evaluated by comparing with an exact solution. Numerical solutions in complex domains obtained with a finite element method show excellent agreement with results obtained with the proposed finite difference methods.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Acoustics and Ultrasonics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3