Molecular Dynamics Simulations of Sound Wave Propagation in a Gas and Thermo-Acoustic Effects on a Carbon Nanotube

Author:

Ayub Md1,Zander Anthony C.1,Howard Carl Q.1,Huang David M.2,Cazzolato Benjamin S.1

Affiliation:

1. School of Mechanical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia

2. Department of Chemistry, The University of Adelaide, Adelaide, SA 5005, Australia

Abstract

Molecular dynamics (MD) simulations have been performed to study sound wave propagation in a simple monatomic gas (argon) and the thermo-acoustic effects on a single walled carbon nanotube (CNT). The objective of this study was to understand the acoustic behavior of CNTs in the presence of acoustic waves propagating in gaseous media. A plane sound wave was generated within a rectangular domain by oscillating a solid wall comprising Lennard-Jones (LJ) atoms with the same intermolecular potential as the gas molecules. A CNT was aligned parallel to the direction of the flow at the wall at the opposite end of the domain. Interatomic interactions in the CNT were modeled using the REBO potential. The behavior of the sound wave propagation in argon gas without the CNT was validated by comparison with a previous study. The simulation results show that the thermo-acoustic behavior of CNTs can be simulated accurately using MD and that large-scale MD can be performed in the ultrasonic frequency range. This investigation will contribute to an improved understanding of the acoustic absorption mechanism of these nanoscopic fibers.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Acoustics and Ultrasonics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3