ANALYSIS OF ALTERNATIVE METHODS FOR IMPULSE RESPONSE FUNCTIONS BASED ON SIGNAL-TO-NOISE RATIO ENHANCEMENT AND COMPLETENESS OF SOURCE SIGNAL RECONSTRUCTION USING PASSIVE TIME REVERSAL

Author:

HSIEH YU-HAO1,TOO GEE-PINN1

Affiliation:

1. Department of Systems and Naval Mechatronic Engineering, National Cheng Kung University, Tainan 70101, Taiwan, R.O.C

Abstract

Noise reduction and signal separation are important functions of acoustic signal processing. This study presents a detailed analysis for designing an acoustic signal processing procedure based on the time-reversal method. For some applications, setting transducers to retransmit at source locations is impracticable. Modeling a wave propagation path between two points using impulse response function is one way to overcome this limitation. This paper introduces alternative methods to calculate impulse response function, including an adaptive digital filter, deconvolution with singular value decomposition and Tikhonov regularization, and correlation. A discussion is also provided on the applicable frequency range and anti-noise ability of the impulse response functions obtained by all three techniques through simulation, and subsequently applies them to the designed time reversal process to enhance the signal-to-noise ratio (SNR) and restore source signals through experimentation. The conclusions of this study are given based on the level of accuracy using the SNR and correlation coefficient as indicators, and the computation time required by alternative methods is also an important factor to be discussed for real-time system design. Results prove that the proposed passive time reversal process is capable of enhancing the SNR and restoring the source signal. The alternative methods of calculating the impulse response function offer various advantages, and should be selected according to the application. If the time-cost is the first consideration and there is no dominant noise source, then correlation is the best choice for calculating impulse response function. If completeness of the reconstructed signal is the key point, the optimal deconvolution process is appropriate. If noise reduction is the highest priority in extracting a useful signal from noisy environments while ensuring acceptable restoration capability and computation time, an adaptive digital filter is suitable.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Acoustics and Ultrasonics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Time Reversal as a Computational Tool in Acoustics and Elastodynamics;Journal of Computational Acoustics;2014-07-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3