On Transient Three-Dimensional Absorbing Boundary Conditions for the Modeling of Acoustic Scattering from Near-Surface Obstacles

Author:

Kallivokas Loukas F.1,Tsikas Aggelos1,Bielak Jacobo1

Affiliation:

1. Computational Mechanics Laboratory, Department of Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA

Abstract

We have recently developed absorbing boundary conditions for the three-dimensional scalar wave equation in full-space. Their applicability has been extended to half-space scattering problems where the scatterer is located near a pressure-free surface. A variational scheme was also proposed for coupling the structural acoustics equations with the absorbing boundary conditions. It was shown that the application of a Galerkin method on the variational form results in an attractive finite element scheme that, in a natural way, gives rise to a surface-only absorbing boundary element on the truncation boundary. The element — the finite element embodiment of a second-order absorbing boundary condition — is completely characterized by a pair of symmetric, frequency-independent damping and stiffness matrices, and is equally applicable to the transient and harmonic steady-state regimes. Previously, we had applied the methodology to problems involving scatterers of arbitrary geometry. In this paper, we validate our approach by comparing numerical results for rigid spherical scatterers submerged in a half-space, against a recently developed analytic solution.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Acoustics and Ultrasonics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3