Affiliation:
1. Computational Mechanics Laboratory, Department of Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
Abstract
We have recently developed absorbing boundary conditions for the three-dimensional scalar wave equation in full-space. Their applicability has been extended to half-space scattering problems where the scatterer is located near a pressure-free surface. A variational scheme was also proposed for coupling the structural acoustics equations with the absorbing boundary conditions. It was shown that the application of a Galerkin method on the variational form results in an attractive finite element scheme that, in a natural way, gives rise to a surface-only absorbing boundary element on the truncation boundary. The element — the finite element embodiment of a second-order absorbing boundary condition — is completely characterized by a pair of symmetric, frequency-independent damping and stiffness matrices, and is equally applicable to the transient and harmonic steady-state regimes. Previously, we had applied the methodology to problems involving scatterers of arbitrary geometry. In this paper, we validate our approach by comparing numerical results for rigid spherical scatterers submerged in a half-space, against a recently developed analytic solution.
Publisher
World Scientific Pub Co Pte Lt
Subject
Applied Mathematics,Acoustics and Ultrasonics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献