NUMERICAL TECHNIQUES FOR MODELING DOPPLER ULTRASOUND SPECTRA SYSTEMS

Author:

RUANO M. GRAÇA1

Affiliation:

1. Adeec, Uceh, Universidade do Algarve, Campus de Gambelas, 8000 Faro, Portugal

Abstract

Evaluation of blood-flow Doppler ultrasound spectral content is currently performed on clinical diagnosis. Since mean frequency and bandwidth spectral parameters are determinants on the quantification of stenotic degree, more precise estimators than the conventional Fourier transform should be seek. This paper summarizes studies led by the author in this field, as well as the strategies used to implement the methods in real-time. Regarding stationary and nonstationary characteristics of the blood-flow signal, different models were assessed. When autoregressive and autoregressive moving average models were compared with the traditional Fourier based methods in terms of their statistical performance while estimating both spectral parameters, the Modified Covariance model was identified by the cost/benefit criterion as the estimator presenting better performance. The performance of three time-frequency distributions and the Short Time Fourier Transform was also compared. The Choi–Williams distribution proved to be more accurate than the other methods. The identified spectral estimators were developed and optimized using high performance techniques. Homogeneous and heterogeneous architectures supporting multiple instruction multiple data parallel processing were essayed. Results obtained proved that real-time implementation of the blood-flow estimators is feasible, enhancing the usage of more complex spectral models on other ultrasonic systems.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Acoustics and Ultrasonics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3