Development of Dye-Sensitized Solid-State ZnO/D149/CuSCN Solar Cell

Author:

Ranasinghe C. S. K.12,Jayaweera E. N.12,Kumara G. R. A.12,Bandara H. M. N.12,Rajapakse R. M. G.12

Affiliation:

1. Postgraduate Institute of Science, University of Peradeniya, Sri Lanka

2. Department of Chemistry, Faculty of Science, University of Peradeniya, Sri Lanka

Abstract

Dye-sensitized solid-state solar cells (DSSC) based on n-type ZnO and p-type CuSCN have been fabricated with highest recorded power conversion efficiency. The working electrode of the cell is composed of D149 dye-coated ZnO -based interconnected nanoparticulate (20 nm) mesoporous layer with ZnO -based dense layer which was prepared on fluorine-doped tin oxide (FTO) glass substrates. CuSCN deposition was carried out according to the previously reported procedure which ensures enhanced p-type conductivity of CuSCN . The surface morphologies of the ZnO dense layer, ZnO porous layer and CuSCN layer have been visualized using scanning electron microscopy (SEM). The cells were fabricated with the configuration of FTO/ ZnO dense layer/ ZnO porous layer/D149/CuSCN/Graphite/Cr-coated FTO. Then the cells were characterized using I-V data as functions of the dense layer resistance (which is proportional to the thickness of the dense layer) and the porous layer thicknesses. The optimum dense layer is found to have 1500 Ω/□ sheet resistance. The cell with porous layer thickness of 9 μm at this dense layer resistance shows the maximum power conversion efficiency of 2.28%. The solar cell parameters of this optimized cell are an open circuit voltage of 0.55 V, a fill factor of 0.51 and a short-circuit current density of 8.2 mA cm-2.

Publisher

World Scientific Pub Co Pte Lt

Subject

Electrical and Electronic Engineering,Computer Science Applications,Condensed Matter Physics,General Materials Science,Bioengineering,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3