MAGNETIC STUDIES OF METAL–INSULATOR TRANSITION IN A QUANTUM WELL SYSTEM

Author:

PETER A. JOHN1,SUGIRTHAM L. CAROLINE2

Affiliation:

1. Government Arts College, Melur-625 106, Madurai, Tamil Nadu, India

2. Department of Physics, Fatima College, Madurai-625 018, India

Abstract

Metal–insulator transition in doped semiconductors is investigated in the presence of intense magnetic fields. A variational procedure within the effective mass approximation is employed using the Thomas–Fermi screening function and the exact quasi-Q2D Lindhard dielectric function. The Hubbard model results are justified using an effective mass that depends on interimpurity separation. The nonparabolicity of the subband is included using an energy-dependent effective mass. Though an increase of ionization energy with a magnetic field is observed for isolated donor models, the metallization occurs with an intense magnetic field at a higher concentration for a particular well width. The diamagnetic susceptibility of a hydrogenic donor impurity in GaAs / Ga 1 - x Al x As quantum well systems is discovered in the observation of metal–insulator transition. It is shown that the diamagnetic susceptibility diverges for all critical concentrations for a given well width. The large diamagnetic susceptibility (> 6) is observed at the transition. All the calculations are carried out for infinite and finite barriers, and the results are compared with the existing literature.

Publisher

World Scientific Pub Co Pte Lt

Subject

Electrical and Electronic Engineering,Computer Science Applications,Condensed Matter Physics,General Materials Science,Bioengineering,Biotechnology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3