Synthesis of Mesoporous Silica Monoliths — A Novel Approach Towards Fabrication of Solid-State Optical Sensors for Environmental Applications

Author:

Prabhakaran D.1,Subashini C.2,Akhila Maheswari M.1

Affiliation:

1. School of Advanced Sciences, Environmental and Analytical Chemistry Division, Vellore Institute of Technology – University, Vellore 632 014, Tamil Nadu, India

2. School of Advanced Sciences, Chemistry Division, Vellore Institute of Technology – University, Chennai Campus, Chennai 600 127, Tamil Nadu, India

Abstract

Mesoporous silica monoliths are an attractive area of research owing to their high specific surface area, uniform channels and mesoporous size (2–30[Formula: see text]nm). This paper deals with the direct templating synthesis of a mesoporous worm-like silica monolithic material using F127 — a triblock copolymer, by micro-emulsion technique using trimethyl benzene (TMB), as the solvent. The synthesized silica monolith is characterized using SEM-EDAX, XRD, BET, NMR and FT-IR. The monolith shows an ordered worm-like mesoporous structure with tuneable through pores, an excellent host for the anchoring of chromo-ionophores for the naked-eye metal ion-sensing. The mesoporous monoliths were loaded with 4-dodecyl-6-(2-pyridylazo)-phenol (DPAP) ligand through direct immobilization, thereby acting as solid-state naked-eye colorimetric ion-sensors for the sensing toxic Pb[Formula: see text] ions at parts-per-billion (ppb) level in various industrial and environmental systems. The influence of various experimental parameters such as solution pH, limiting ligand loading concentration, amount of monolith material, matrix tolerance level, limit of detection and quantification has been studied and optimized.

Publisher

World Scientific Pub Co Pte Lt

Subject

Electrical and Electronic Engineering,Computer Science Applications,Condensed Matter Physics,General Materials Science,Bioengineering,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3