Affiliation:
1. Tbilisi State University, Chavchavadze Avenue 13, 0179 Tbilisi, Georgia
Abstract
In this study, the quantum state depression (QSD) in a semiconductor quantum well (QW) is investigated. The QSD emerges from the ridged geometry of the QW boundary. Ridges impose additional boundary conditions on the electron wave function, and some quantum states become forbidden. State density is reduced in all energy bands, including the conduction band (CB). Hence, electrons, rejected from the filled bands, must occupy quantum states in the empty bands due to the Pauli exclusion principle. Both the electron concentration in the CB and the Fermi energy increased, as in the case of donor doping. Since quantum state density is reduced, the ridged quantum well (RQW) exhibits quantum properties at widths approaching 200 nm. A wide RQW can be used to improve photon confinement in QW-based optoelectronic devices. Reduction in the state density increases the carrier mobility and makes the ballistic transport regime more pronounced in the semiconductor QW devices. Furthermore, the QSD doping does not introduce scattering centers and can be used for power electronics.
Publisher
World Scientific Pub Co Pte Lt
Subject
Electrical and Electronic Engineering,Computer Science Applications,Condensed Matter Physics,General Materials Science,Bioengineering,Biotechnology
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献