Affiliation:
1. School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India
Abstract
This paper presents the effect of heat and mass transfer on the blood flow through a tapered stenosed artery assuming blood as a Jeffrey fluid model. The equations governing the blood flow are modeled in cylindrical coordinates. Analytical solutions are constructed for the velocity, temperature, concentration and flux by solving flow governing nonlinear coupled equations using Homotopy Perturbation Method. The important characteristics of blood flow such as concentration and temperature are found by using Homotopy Perturbation Method and these solutions are used to find exact solution for velocity profile. Variation in velocity, temperature, concentration and flux profiles for different values of thermophoresis and Brownian motion parameter are discussed. Homotopy Perturbation Method technique is used to calculate these expressions and Matlab programming is used to find computational results. And then computational results are presented graphically. The significance of the present model over the existing models has been pointed out by comparing the result with other theories both analytically and numerically. Here, in this paper, we have discussed some important phenomena raised in biotechnology and medicine at the nanoscale. So, this paper about nanoparticles behavior could be useful in the development of new diagnosis tools for many diseases in medical field, biotechnology as well as in medicine at the nanoscale.
Publisher
World Scientific Pub Co Pte Lt
Subject
Electrical and Electronic Engineering,Computer Science Applications,Condensed Matter Physics,General Materials Science,Bioengineering,Biotechnology
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献