Affiliation:
1. Department of Low Temperatures and Condensed State, National Scientific Center, "Kharkov Institute of Physics and Technology", 61108 Kharkov, Ukraine
Abstract
Linear forms of carbon are important in a wide variety of applications, ranging from highly conducting interconnects to field emission materials. By methods of field ion microscopy (FIM) and mass-spectrometry, it was revealed that linear carbon chains were present at the surface of carbon fibers after high-voltage treatment. The carbon chains attached to the specimen tips were produced in situ in a field ion microscope by unraveling of nanofibers using low-temperature evaporation in electric fields of the order of 1011 Vm-1. The unraveling of graphite is possible due to the ultimate strength of the monoatomic carbon chain. The maximum force before failure of carbon chains at 0 K is 7.916 nN at a strain of 0.19 and the ideal tensile strength is equal to 252.1 GPa. Molecular dynamics simulations and high resolution FIM experiments are performed to assess the evaporation of atomic chains under high-field conditions. One can conclude that ions are field evaporated from a graphite surface initially in linear cluster forms, which decompose mostly into smaller atomic clusters and individual ions because of the ultrahigh-temperature excitation during unraveling.
Publisher
World Scientific Pub Co Pte Lt
Subject
Electrical and Electronic Engineering,Computer Science Applications,Condensed Matter Physics,General Materials Science,Bioengineering,Biotechnology
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献