Affiliation:
1. Department of Chemistry, College of Science, University of Basrah, Basrah, Iraq
Abstract
The biosynthesis of silver nanoparticles (AgNPs) was conducted using the Iraqi Jasminum sambac (L.) Aiton leaves having substantial bioreduction and capping properties. The aqueous extract has been characterized using FTIR to observe changes in functional groups of extract compared to extract-AgNPs. GC-MS understands the mechanism synthesis of AgNPs based on the aqueous extract of J. sambac through identification of aqueous extracted. The synthesized AgNPs were characterized using UV–Vis at 455[Formula: see text]nm, XRD broad chart owing to size of AgNPs and TEM (AgNPs average size less than 10[Formula: see text]nm). FESEM-EDX was carried out to observe the nearly spherical shape with elemental composition. DLS was appointed with hydrodynamic radius as 105.9[Formula: see text]nm and also had a good polydispersity at 0.357, and [Formula: see text]-potential at [Formula: see text]23.1. AgNPs have antibacterial gram-positive (Staphylococcus aureus) and gram-negative (Escherichia coli), cytotoxicity MTT assay against breast cancer MCF-7 cell line IC50 at 222.6[Formula: see text][Formula: see text]g/mL, genotoxicity fragmented DNA of MCF-7 by comet assay, emphasized apoptosis cells through cell cycle flow cytometry. Overall, safe, cost-effective, and scalable biogenic nano-formulation of Jasminum sambac-AgNPs possesses antibacterial and anticancer therapeutic applications.
Publisher
World Scientific Pub Co Pte Ltd
Subject
Electrical and Electronic Engineering,Computer Science Applications,Condensed Matter Physics,General Materials Science,Bioengineering,Biotechnology
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献