The Meshfree Analysis of Geometrically Nonlinear Problem Based on Radial Basis Reproducing Kernel Particle Method

Author:

Liu Zheng1,Wei Gaofeng1,Wang Zhiming1,Qiao Jinwei1

Affiliation:

1. School of Mechanical and Automotive Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, Shandong, P. R. China

Abstract

Based on the reproducing kernel particle method (RKPM) and the radial basis function (RBF), the radial basis reproducing kernel particle method (RRKPM) is presented for solving geometrically nonlinear problems. The advantages of the presented method are that it can eliminate the negative effect of diverse kernel functions on the computational accuracy and has greater computational accuracy and better convergence than the RKPM. Using the weak form of Galerkin integration and the Total Lagrangian (T.L.) formulation, the correlation formulae of the RRKPM for geometrically nonlinear problem are obtained. Newton–Raphson (N-R) iterative method is utilized in the process of numerical solution. Moreover, penalty factor, the scaling parameter, the shaped parameter of the RBF and loading step number are discussed. To prove validity of the proposed method, several numerical examples are simulated and compared to finite element method (FEM) solutions.

Funder

National Natural Science Foundation of China

Key Research Project of Shandong Province

Publisher

World Scientific Pub Co Pte Lt

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3