Affiliation:
1. Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
Abstract
The small-scale effects on the thermoelastic damping (TED) in Euler–Bernoulli micro-beams is investigated in this study. To this purpose, by utilizing the strain gradient theory (SGT) and the dual-phase-lag (DPL) heat conduction model, the coupled equations of motion and heat conduction are derived. By solving these equations simultaneously and using the Galerkin method, the real and imaginary parts of the frequency and the amount of TED in thin micro-beams are obtained. The results predicted by SGT are compared with those given by the modified couple stress theory (MCST) and the classical continuum theory. In addition, TED is calculated on the basis of energy dissipation approach which shows that the difference between the obtained results and those evaluated based on the frequency approach is negligible. Some numerical results are also presented in order to study the effects of different parameters of the micro-beams as well as the type of the boundary conditions on TED and the critical thickness; these parameters include the micro-beam height, its aspect ratio and type of the material.
Publisher
World Scientific Pub Co Pte Lt
Subject
Mechanical Engineering,Mechanics of Materials,General Materials Science
Cited by
36 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献