Mathematical Modeling and Scaling of the Friction Losses of a Mechanical Gyroscope

Author:

Pozzi Nicola1,Bonfanti Mauro1,Mattiazzo Giuliana1

Affiliation:

1. Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy

Abstract

Friction is a complicated phenomenon that plays a central role in a wide variety of physical systems. An accurate modeling of the friction forces is required in the model-based design approach, especially when the efficiency optimization and system controllability are the core of the design. In this work, a gyroscopic unit is considered as case study: the flywheel rotation is affected by different friction sources that needs to be compensated by the flywheel motor. An accurate modeling of the dissipations can be useful for the system efficiency optimization. According to the inertial sea wave energy converter (ISWEC) gyroscope layout, friction forces are modeled and their dependency with respect to the various physical quantities involved is examined. The mathematical model of friction forces is validated against the experimental data acquired during the laboratory testing of the ISWEC gyroscope. Moreover, in the wave energy field, it is common to work with scale prototypes during the full-scale device development. For this reason, the scale effect on dissipations has been correlated based on the Froude scaling law, which is commonly used for wave energy converter scaling. Moreover, a mixed Froude–Reynolds scaling law is taken into account, in order to maintain the scale of the fluid-dynamic losses due to flywheel rotation. The analytical study is accompanied by a series of simulations based on the properties of the ISWEC full-scale gyroscope.

Publisher

World Scientific Pub Co Pte Lt

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3