Affiliation:
1. Department of Mathematics, National Institute of Technology, Rourkela, Odisha 769008, India
Abstract
In this paper, free vibration of functionally graded (FG) rectangular plates subject to different sets of boundary conditions within the framework of classical plate theory is investigated. Rayleigh–Ritz method is used to obtain the generalized eigenvalue problem. Trial functions denoting the displacement components are expressed in simple algebraic polynomial forms which can handle any sets of boundary conditions. Material properties of the FG plate are assumed to vary continuously in the thickness direction of the constituents according to power-law form. The objective is to study the effects of constituent volume fractions, aspect ratios and power-law indices on the natural frequencies. New results for frequency parameters are incorporated after performing a test of convergence. Comparison with the results from the existing literature are provided for validation in special cases. Three-dimensional mode shapes are presented for FG square plates having various boundary conditions at the edges for different power-law indices. The present investigation also involves the rectangular FG plate to lay on a uniform Winkler elastic foundation. New results for the eigenfrequencies associated with foundation parameters are also reported here with the validation in special cases after checking a convergence pattern.
Publisher
World Scientific Pub Co Pte Lt
Subject
Mechanical Engineering,Mechanics of Materials,General Materials Science
Cited by
66 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献