Bending, Buckling and Free Vibration Analysis of Size-Dependent Nanoscale FG Beams Using Refined Models and Eringen’s Nonlocal Theory

Author:

Sayyad Atteshamuddin S.1,Ghugal Yuwaraj M.2

Affiliation:

1. Department of Civil Engineering, SRES’s Sanjivani College of Engineering, Savitribai Phule Pune University, Kopargaon-423601, Maharashtra, India

2. Department of Applied Mechanics, Government College of Engineering, Karad-415124, Maharashtra, India

Abstract

In this study, a theoretical unification of twenty-one nonlocal beam theories are presented by using a unified nonlocal beam theory. The small-scale effect is considered based on the nonlocal differential constitutive relations of Eringen. The present unified theory satisfies traction free boundary conditions at the top and bottom surface of the nanobeam and hence avoids the need of shearing correction factor. Hamilton’s principle is employed to derive the equations of motion. The present unified nonlocal formulation is applied for the bending, buckling and free vibration analysis of functionally graded (FG) nanobeams. The elastic properties of FG material vary continuously by gradually changing the volume fraction of the constituent materials in the thickness direction. Closed-form analytical solutions are obtained by using Navier’s solution technique. Non-dimensional displacements, stresses, natural frequencies and critical buckling loads for FG nanobeams are presented. The numerical results presented in this study can be served as a benchmark for future research.

Publisher

World Scientific Pub Co Pte Lt

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3