Analytical Piezoelasticity Solution for Natural Frequencies of Levy-Type Piezolaminated Plates

Author:

Behera Susanta1,Kumari Poonam1

Affiliation:

1. Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India

Abstract

First time, an analytical solution based on three-dimensional (3D) piezoelasticity is developed for the free vibration analysis of Levy-type piezolaminated plates using 3D extended Kantorovich method (EKM). Extended Hamilton principle (which is extended from elastic to piezoelectric case) is further extended to the dynamic version of mixed form containing contributions from the electrical terms. Multi-term multi-field extended Kantorovich method in conjunction with Fourier series (along [Formula: see text]-direction) is employed to obtain two sets of first-order homogeneous ordinary differential equations (8[Formula: see text] along [Formula: see text]- and [Formula: see text]-axes). A robust algorithm is designed (Fortran Code) to extract the natural frequencies and mode shapes of Levy-type piezolaminated plates. The accuracy and efficacy of this technique are verified thoroughly by comparing it with the existing results in the literature and with the 3D finite element (FE) solutions. Numerical results are presented for single-layer piezoelectric and smart sandwich plates considering five different boundary support conditions, three aspect ratios (length to thickness ratio) and electric open and close circuit conditions. The present results shall be used as a benchmark to assess various two-dimensional (2D) and 3D numerical solutions (e.g., FEM, DQM, etc.).

Publisher

World Scientific Pub Co Pte Lt

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3