Delamination of Stiff Films on Pressure Sensitive Ductile Substrates

Author:

An Bingbing123

Affiliation:

1. Department of Mechanics, Shanghai University, Shanghai 200444, P. R. China

2. Institute for the Conservation of Cultural Heritage, Shanghai University, Shanghai 200444, P. R. China

3. Shanghai Key Laboratory of Mechanics in Energy Engineering, Shanghai 200072, P. R. China

Abstract

Stiff thin films supported by pressure sensitive ductile solids are an ubiquitous architecture appearing in a wide range of applications. The film rupture and delamination of films are important reliability issues of such an architecture. In this study, we investigate the synergistic effects of plastic deformation of substrates and fracture properties of film/substrate interface on the delamination of films. The focus of this study is on the interplay between the debonding of the interface and the plastic deformation of substrates. Finite deformation analyses are carried out for a stiff film deposited on a soft substrate with the substrate subjected to stretching. The fracture process of film/substrate interface is represented by a cohesive zone model, and the substrate is modeled as an elastic–plastic solid with pressure sensitive and plastically dilatant plastic flow. It is found that increasing the degree of pressure sensitivity of substrate can generate large plastic deformation, promoting crack tip blunting and thereby retarding delamination of film/substrate interface. Whereas, the increase in the degree of plastic dilatancy of substrate gives rise to the limited plastic deformation and leads to poor resistance to interface delamination. The strain hardening of substrate also affects the film/substrate debonding; the substrate with weakly post-yield strain hardening behavior contributes to enhanced resistance to interface delamination. It is further identified that the fracture properties of interface play an important role in activating plastic deformation of substrates. The film/substrate interface with high stiffness, large cohesive strength and high toughness enables the substrate to undergo significant plastic deformation, which suppresses the film/substrate delamination.

Publisher

World Scientific Pub Co Pte Lt

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3