Affiliation:
1. School of Mechanical and Precision Instrument Engineering, Xi’an University of Technology, Xi’an, Xi’an, Shaanxi province, 710048, P. R. China
Abstract
To solve the problem of rail crack propagation, inadequate studies mainly use a two-dimensional (2D) model for macroscopic crack analysis owing to the failure of accurately reflecting the contact status between the wheel and rail. In this work, we use ANSYS software to establish a three-dimensional (3D) wheel–rail contact model to clarify the microcracks on the rail tread. The influence of the number of horizontal and vertical cyclic loads during the rail’s fatigue crack growth is analyzed. The results suggest that as the number of vertical and tangential cyclic loads increases, the length of the rail crack increases. Using experiments to verify the law between the number of cyclic loads and rail crack growth length, the experimental findings proved that the law of crack growth is basically consistent with the aforementioned simulation results and the outcome of the Paris expansion curve, verifying the validity of the simulation results.
Publisher
World Scientific Pub Co Pte Lt
Subject
Mechanical Engineering,Mechanics of Materials,General Materials Science
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献