AXIAL CRUSHING OF TRIANGULAR TUBES

Author:

FAN Z.1,LU G.1,YU T. X.2,LIU K.3

Affiliation:

1. School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore

2. Mechanical and Material Science Research Center, Ningbo University, Ningbo 315211, China

3. LTCS and Department of Mechanics and Aerospace Engineering, College of Engineering, Peking University, Beijing 100871, China

Abstract

In the present paper, the mechanical behavior of large deformation of a regular equilateral triangular tube under quasi-static axial crushing is reported, which is a polygon with an acute angle and odd number of sides. Based on the results from nonlinear finite element analysis (FEA), a new type of inextensional basic plastic collapse folding element is proposed to describe the plastic progressive collapse. The progressive folding around the stationary horizontal hinges and inclined traveling hinges are involved to develop the new basic folding element. Two types of inextensible deformation modes are discovered, i.e., diamond mode and rotational symmetrical mode. The average crushing load for each mode is predicted from the super-folding element theory, which was proposed from the previous investigation on the axial crushing of square columns. A rigid-plastic material model and a kinematically admissible model are involved in this theory. The results are further validated against experiments. The approximate quasi-static theoretical predictions for the mean crushing loads of triangular tubes provide reasonable agreement with the corresponding experimental results.

Publisher

World Scientific Pub Co Pte Lt

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 59 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3