DYNAMIC PULL-IN INSTABILITY AND VIBRATION ANALYSIS OF A NONLINEAR MICROCANTILEVER GYROSCOPE UNDER STEP VOLTAGE CONSIDERING SQUEEZE FILM DAMPING

Author:

MOJAHEDI M.1,AHMADIAN M. T.2,FIROOZBAKHSH K.2

Affiliation:

1. School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran

2. Center of Excellence in Design, Robotics and Automation (CEDRA), Department of Mechanical Engineering Sharif University of Technology, Tehran, Iran

Abstract

In this paper, a nonlinear model is used to analyze the dynamic pull-in instability and vibrational behavior of a microcantilever gyroscope. The gyroscope has a proof mass at its end and is subjected to nonlinear squeeze film damping, step DC voltages as well as base rotation excitation. The electrostatically actuated and detected microgyroscopes are subjected to coupled flexural-flexural vibrations that are related by base rotation. In order to detune the stiffness and natural frequencies of the system, DC voltages are applied to the proof mass electrodes in drive and sense directions. Nonlinear integro differential equations of the system are derived using extended Hamilton principle considering nonlinearities in curvature, inertia, damping and electrostatic forces. Afterward, the Gelerkin decomposition method is implemented to reduce partial differential equations of microgyroscope deflection to a system of nonlinear ordinary equations. By using the 4th order Runge–Kutta method, the nonlinear ordinary equations are solved for various values of damping coefficients, air pressures, base rotation and various initial gaps between the proof mass electrodes and the substrates. Results show that the geometric nonlinearity increases the dynamic pull-in voltage and also consideration of the base rotation gives an improved evaluation of the dynamic instability. It is shown that the squeeze film damping has a considerable influence on the dynamic deflection of the microgyroscopes.

Publisher

World Scientific Pub Co Pte Lt

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3