MICRO-SLIP INDUCED DAMPING IN PLANAR CONTACT UNDER CONSTANT AND UNIFORM NORMAL STRESS

Author:

PEYRET N.1,DION J.-L.2,CHEVALLIER G.2,ARGOUL P.1

Affiliation:

1. Université Paris-Est, UR Navier, Ecole des Ponts ParisTech, 6–8 av. Blaise Pascal Cité Descartes, Champs-sur-Marne, 77455 Marne-la-Vallée, France

2. Supmeca, 3 rue Fernand Hainaut, 93407 Saint-Ouen Cedex, France

Abstract

The friction between interfaces at bolted joints plays a major role in the damping of structures. This paper deals with the energy losses caused by micro-slips in the joints. The aim of this study is to define in an analytical way these energy dissipation mechanisms which we examine through the analysis of a new benchmark: the flexural vibration of a clamped-clamped beam with original positioning of the interfaces. The joints exhibit the behavior of an interface under constant and uniform normal stress. The stress and strain values are computed at the joints under the assumption of quasi-static motion. This model allows us to understand the evolution of the slip and stick regions along the joint interfaces during the loading process. The expressions of the strain and stress fields during each phase of the loading process are derived. These lead to the quantification of the dissipated energy within the interface. Using this formula, a nonlinear loss factor can then be computed. In the final part of the paper, the dynamic response of the beam is calculated using this nonlinear loss factor.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3