NUMERICAL MANIFOLD METHOD (NMM) SIMULATION OF STRESS WAVE PROPAGATION THROUGH FRACTURED ROCK MASS

Author:

FAN L. F.12,YI X. W.3,MA G. W.3

Affiliation:

1. Department of Civil Engineering, Zhejiang University, Yuhangtang Road, Hangzhou, 310058, China

2. School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798, Singapore

3. School of Civil and Resource Engineering, The University of Western Australia, Crawley, WA 6009, Australia

Abstract

The present work is devoted to the simulation of stress wave propagation through fractured elastic media, such as rock mass, by using the numerical manifold method (NMM). A single fracture is used to verify the capability and accuracy of the NMM in modeling fractured rock mass. The frequency-dependence on stress wave transmission across a fracture is analyzed. The influence of the fracture specific stiffness on the wave attenuation and effective wave velocity is discussed. The results from the NMM have a good agreement with those obtained from a theoretical displacement discontinuity method (DDM). Taking the advantage that the NMM is able to simulate highly fractured elastic media with a consistent mathematical cover system, a numerical example of stress wave propagation through a fractured rock mass with numerous inherent fractures is presented. It is showed that the results are reasonable and the NMM has a high efficiency in simulating stress wave propagation through highly fractured rock mass. A safety assessment of a tunnel under blast is conducted by using the NMM subsequently. The potential application of the NMM to a more complex fractured rock mass is demonstrated.

Publisher

World Scientific Pub Co Pte Lt

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 131 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3