Affiliation:
1. II. Institut für Theoretische Physik, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
Abstract
The connection between space-time covariant representations (obtained by inducing from the Lorentz group) and irreducible unitary representations (induced from Wigner’s little group) of the Poincaré group is re-examined in the massless case. In the situation relevant to physics, it is found that these are related by Marsden-Weinstein reduction with respect to a gauge group. An analogous phenomenon is observed for classical massless relativistic particles. This symplectic reduction procedure can be (‘second’) quantized using a generalization of the Rieffel induction technique in operator algebra theory, which is carried through in detail for electromagnetism. Starting from the so-called Fermi representation of the field algebra generated by the free abelian gauge field, we construct a new (‘rigged’) sesquilinear form on the representation space, which is positive semi-definite, and given in terms of a Gaussian weak distribution (promeasure) on the gauge group (taken to be a Hilbert Lie group). This eventually constructs the algebra of observables of quantum electromagnetism (directly in its vacuum representation) as a representation of the so-called algebra of weak observables induced by the trivial representation of the gauge group.
Publisher
World Scientific Pub Co Pte Lt
Subject
Mathematical Physics,Statistical and Nonlinear Physics
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献