Affiliation:
1. School of Mathematics and Statistics, University of New South Wales, Sydney, New South Wales 2052, Australia
2. Department of Mathematics, Technical University, Darmstadt, Germany
Abstract
The Weyl algebra — the usual C*-algebra employed to model the canonical commutation relations (CCRs), has a well-known defect, in that it has a large number of representations which are not regular and these cannot model physical fields. Here, we construct explicitly a C*-algebra which can reproduce the CCRs of a countably dimensional symplectic space (S, B) and such that its representation set is exactly the full set of regular representations of the CCRs. This construction uses Blackadar's version of infinite tensor products of nonunital C*-algebras, and it produces a "host algebra" (i.e. a generalized group algebra, explained below) for the σ-representation theory of the Abelian group S where σ(·,·) ≔ eiB(·,·)/2. As an easy application, it then follows that for every regular representation of [Formula: see text] on a separable Hilbert space, there is a direct integral decomposition of it into irreducible regular representations (a known result).
Publisher
World Scientific Pub Co Pte Lt
Subject
Mathematical Physics,Statistical and Nonlinear Physics
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献