Affiliation:
1. Département de Mathématiques, Université de Tours, Parc de Grandmont, F-37200 Tours, France
Abstract
The dynamical (super)symmetries for various monopole systems are reviewed. For a Dirac monopole, non-smooth Runge–Lenz vector can exist; there is, however, a spectrum-generating conformal o(2,1) dynamical symmetry that extends into osp(1/1) or osp(1/2) for spin 1/2 particles. Self-dual 't Hooft–Polyakov-type monopoles admit an su(2/2) dynamical supersymmetry algebra, which allows us to reduce the fluctuation equation to the spin 0 case. For large r, the system reduces to a Dirac monopole plus a suitable inverse-square potential considered before by McIntosh and Cisneros, and by Zwanziger in the spin 0 case, and to the "dyon" of D'Hoker and Vinet for spin 1/2. The asymptotic system admits a Kepler-type dynamical symmetry as well as a "helicity-supersymmetry" analogous to the one Biedenharn found in the relativistic Kepler problem. Similar results hold for the Kaluza–Klein monopole of Gross–Perry–Sorkin. For the magnetic vortex, the N = 2 supersymmetry of the Pauli Hamiltonian in a static magnetic field in the plane combines with the o(2) × o(2,1) bosonic symmetry into an o(2) × osp(1/2) dynamical superalgebra.
Publisher
World Scientific Pub Co Pte Lt
Subject
Mathematical Physics,Statistical and Nonlinear Physics
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献