The ground state construction of bilayer graphene

Author:

Giuliani Alessandro1,Jauslin Ian2

Affiliation:

1. Dipartimento di Matematica e Fisica, Università degli Studi Roma Tre, L.go S.L. Murialdo, 1, 00146 Roma, Italy

2. Dipartimento di Fisica, University of Rome “Sapienza”, P.le Aldo Moro, 2, 00185 Rome, Italy

Abstract

We consider a model of half-filled bilayer graphene, in which the three dominant Slonczewski–Weiss–McClure hopping parameters are retained, in the presence of short-range interactions. Under a smallness assumption on the interaction strength [Formula: see text] as well as on the inter-layer hopping [Formula: see text], we construct the ground state in the thermodynamic limit, and prove that the pressure and two-point Schwinger function, away from its singularities, are analytic in [Formula: see text], uniformly in [Formula: see text]. The interacting Fermi surface is degenerate, and consists of eight Fermi points, two of which are protected by symmetries, while the locations of the other six are renormalized by the interaction, and the effective dispersion relation at the Fermi points is conical. The construction reveals the presence of different energy regimes, where the effective behavior of correlation functions changes qualitatively. The analysis of the crossover between regimes plays an important role in the proof of analyticity and in the uniform control of the radius of convergence. The proof is based on a rigorous implementation of fermionic renormalization group methods, including determinant estimates for the renormalized expansion.

Publisher

World Scientific Pub Co Pte Lt

Subject

Mathematical Physics,Statistical and Nonlinear Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A $${\mathbb {Z}}_{2}$$-Topological Index for Quasi-Free Fermions;Mathematical Physics, Analysis and Geometry;2022-03-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3