Wick rotations in deformation quantization

Author:

Schmitt Philipp1,Schötz Matthias2

Affiliation:

1. Department of Mathematical Sciences, University of Copenhagen, Universitetsparken 5, 2100 København, Denmark

2. Département de Mathématiques, Université libre de Bruxelles CP 218, Boulevard du Triomphe, Bruxelles 1050, Belgium

Abstract

We study formal and non-formal deformation quantizations of a family of manifolds that can be obtained by phase space reduction from [Formula: see text] with the Wick star product in arbitrary signature. Two special cases of such manifolds are the complex projective space [Formula: see text] and the complex hyperbolic disc [Formula: see text]. We generalize several older results to this setting: The construction of formal star products and their explicit description by bidifferential operators, the existence of a convergent subalgebra of “polynomial” functions, and its completion to an algebra of certain analytic functions that allow an easy characterization via their holomorphic extensions. Moreover, we find an isomorphism between the non-formal deformation quantizations for different signatures, linking, e.g., the star products on [Formula: see text] and [Formula: see text]. More precisely, we describe an isomorphism between the (polynomial or analytic) function algebras that is compatible with Poisson brackets and the convergent star products. This isomorphism is essentially given by Wick rotation, i.e. holomorphic extension of analytic functions and restriction to a new domain. It is not compatible with the [Formula: see text]-involution of pointwise complex conjugation.

Funder

National Research Foundation

Fonds Wetenschappelijk Onderzoek - Vlaaderen

Publisher

World Scientific Pub Co Pte Ltd

Subject

Mathematical Physics,Statistical and Nonlinear Physics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Function theory off the complexified unit circle: Fréchet space structure and automorphisms;Annales Fennici Mathematici;2024-04-10

2. Spectral theory of the invariant Laplacian on the disk and the sphere – a complex analysis approach;Canadian Journal of Mathematics;2024-03-01

3. Symmetry Reduction of States I;Journal of Noncommutative Geometry;2023-10-06

4. Strict Quantization of Polynomial Poisson Structures;Communications in Mathematical Physics;2022-11-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3