ON THE HESSIAN OF THE ENERGY FORM IN THE GINZBURG–LANDAU MODEL OF SUPERCONDUCTIVITY

Author:

COMTE MYRIAM1,SAUVAGEOT MYRTO1

Affiliation:

1. Laboratoire Jacques-Louis Lions, Boîte 187, Université Pierre et Marie Curie, 4 Place Jussieu, F-75252 Paris Cedex 05, France

Abstract

The purpose of this work is to study the stability of radial solutions of degree d for the Ginzburg–Landau model of superconductivity with an applied magnetic field in a disk of radius [Formula: see text]. We consider the branch of solutions introduced in [24] as a branch with the radius of the ball as parameter. We prove that for small radii the branch is stable while it is unstable for large radii, see [6]. We then study in detail the Hessian of the energy at the symmetric vortex at the stability transition. Finally under a couple of extra assumptions, we construct a branch of solutions bifurcating from the radial one at this point, and describe it.

Publisher

World Scientific Pub Co Pte Lt

Subject

Mathematical Physics,Statistical and Nonlinear Physics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On stability of Abrikosov vortex lattices;Advances in Mathematics;2018-02

2. Magnetic Vortices, Abrikosov Lattices, and Automorphic Functions;Mathematical and Computational Modeling;2015-05-08

3. Lack of Diamagnetism and the Little–Parks Effect;Communications in Mathematical Physics;2015-01-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3