Dynamics of two qubits in common environment

Author:

Bratus E.1,Pastur L.1

Affiliation:

1. B. Verkin Institute for Low Temperatures Physics and Engineering, Kharkiv, Ukraine

Abstract

We consider the entanglement evolution of two qubits embedded into disordered multiconnected environment. We model the environment and its interaction with qubits by large random matrices allowing for a possibility to describe environments of meso- and even nanosize. We obtain general formulas for the time dependent reduced density matrix of the qubits corresponding to several cases of the qubit-environment interaction and initial condition. We then work out an analog of the Born–Markov approximation to find the evolution of the widely used entanglement quantifiers: the concurrence, the negativity and the quantum discord. We show that even in this approximation the time evolution of the reduced density matrix can be non-Markovian, thereby describing certain memory effects due to the backaction of the environment on qubits. In particular, we find the vanishing of the entanglement (Entanglement Sudden Death) at finite moments and its revivals (Entanglement Sudden Birth). Our results, partly known and partly new, can be viewed as a manifestation of the universality of certain properties of decoherent qubit evolution which have been found previously in various versions of bosonic macroscopic environment.

Publisher

World Scientific Pub Co Pte Lt

Subject

Mathematical Physics,Statistical and Nonlinear Physics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3