N/V-LIMIT FOR LANGEVIN DYNAMICS IN CONTINUUM

Author:

CONRAD FLORIAN12,GROTHAUS MARTIN1

Affiliation:

1. Mathematics Department, University of Kaiserslautern, P. O. Box 3049, 67653 Kaiserslautern, Germany

2. Mathematics Department, Bielefeld University, P. O. Box 100131, 33501 Bielefeld, Germany

Abstract

We construct an infinite particle/infinite volume Langevin dynamics on the space of simple configurations in ℝd having velocities as marks. The construction is done via a limiting procedure using N-particle dynamics in cubes (-λ, λ]d with periodic boundary condition. A main step to this result is to derive an (improved) Ruelle bound for the canonical correlation functions of N-particle systems in (-λ, λ]d with periodic boundary condition. After proving tightness of the laws of the finite particle dynamics, the identification of accumulation points as martingale solutions of the Langevin equation is based on a general study of properties of measures on configuration space fulfilling a uniform Ruelle bound (and their weak limits). Additionally, we prove that the initial/invariant distribution of the constructed dynamics is a tempered grand canonical Gibbs measure. All proofs work for a wide class of repulsive interaction potentials ϕ (including, e.g., the Lennard–Jones potential) and all temperatures, densities and dimensions d ≥ 1.

Publisher

World Scientific Pub Co Pte Lt

Subject

Mathematical Physics,Statistical and Nonlinear Physics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Gibbs states of continuum particle systems with unbounded spins: Existence and uniqueness;Journal of Mathematical Physics;2018-01

2. Phase transitions in continuum ferromagnets with unbounded spins;Journal of Mathematical Physics;2015-11

3. Gibbs states on random configurations;Journal of Mathematical Physics;2014-08

4. A Phase Transition in a Quenched Amorphous Ferromagnet;Journal of Statistical Physics;2014-04-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3