Affiliation:
1. Dipartimento Di Matematica, Università Di Roma Tre, Roma, I-00146, Italy
2. Department of Mathematics and Statistics, University of Surrey, Guildford GU2 7XH, UK
Abstract
We study perturbations of a class of analytic two-dimensional autonomous systems with perturbations depending periodically on time; for instance one can imagine a periodically driven or forced system with one degree of freedom. In the first part of the paper, we revisit a problem considered by Chow and Hale on the existence of subharmonic solutions. In the analytic setting, under more general (weaker) conditions on the perturbation, we prove their results on the bifurcation curves dividing the region of non-existence from the region of existence of subharmonic solutions. In particular our results apply also when one has degeneracy to the first order — i.e. when the subharmonic Melnikov function is identically constant. Moreover we can deal as well with the case in which degeneracy persists to arbitrarily high orders, in the sense that suitable generalizations to higher orders of the subharmonic Melnikov function are also identically constant. The bifurcation curves consist of four branches joining continuously at the origin, where each of them can have a singularity (although generically they do not). The branches can form a cusp at the origin: we say in this case that the curves are degenerate as the corresponding tangent lines coincide. The method we use is completely different from that of Chow and Hale, and it is essentially based on the proof of convergence of the perturbation theory. It also allows us to treat the Melnikov theory in degenerate cases in which the subharmonic Melnikov function is either identically vanishing or has a zero which is not simple. This is investigated at length in the second part of the paper. When the subharmonic Melnikov function has a non-simple zero, we consider explicitly the case where there exist subharmonic solutions, which, although not analytic, still admit a convergent fractional series in the perturbation parameter.
Publisher
World Scientific Pub Co Pte Lt
Subject
Mathematical Physics,Statistical and Nonlinear Physics
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献